Development and Use of an Ozone Regression Model to Predict and Evaluate Ozone in the UGRB

Alexandria Herdt Adam Deppe

National Air Quality Conference Austin, TX - January 25, 2018

UGRB Non-Attainment Area

Area environmental QUALITY

- Entered marginal non-attainment status in July of 2012
- Region of intense fossil fuel extraction
- Prone to strong thermal inversions and persistent snow cover
 - Produces ozone (O₃) exceedances in the winter season
- Yearly field studies (UGWOS) starting in 2007 to help understand and predict winter O₃ formation in this area
- WDEQ-AQD forecasts for O₃ in UGRB everyday from January March

ENVIRONMENTAL

OUALITY

Previous Modeling Explored

Multiple studies have been commissioned by the WDEQ-AQD:

- EPA's OZIPR photochemical box modeling
- 3-dimensional photochemical grid modeling (CAM_x & CMAQ)

Box Modeling

- Results found that optimum VOC/NOx ratios for winter O₃ formation in southwestern Wyoming are higher than typical summer events
- Representation of chemistry was capable of generating O₃ concentrations consistent with observed values
- But lack of spatial treatment (emissions/emission sources) and meteorology limits real-time predictability

Figure 2-6. Base case 1-hr ozone response surface (EKMA diagram) showing NMOC and NOx-sensitive regions on either side of a "ridge line" at NMOC/NOx ratio of about 120.

ENVIRONMENTAL

QUALITY

Previous Modeling Explored

3-Dimensional Photochemical Grid Model Results

Time Series of Observed (black), CAMx (red) and CMAQ (blue) Ozone Concentrations at Boulder During the Three IOPs

Boulder Monitoring Site

Surface Ozone Concentration (ppb)

Time Series of Observed (black), CAMx (red) and CMAQ (blue) Ozone Concentrations at Daniel During the Three IOPs

Daniel Monitoring Site

• Under-prediction of observed O₃ concentrations by both CAM_x and CMAQ

Statistical Approach: Ozone Regression Modeling

All statistical regression models have the same basic format:

$$O_{3x} = \left[\sum_{k=1}^{n} (c_k V_k)\right] + C$$

Where:

- O_{3x} designates the O₃ concentration on day x as predicted by the model
- C is a constant
- c_kV_k represents the pairs of weighting coefficients and predictor variables

Boulder-8 Model Development

WYOMING DEPARTMENT OF **ENVIRONMENTAL** OUALITY

Figures from Mansfield et al., 2013 - Statistical analysis of winter ozone events

- Adopted a statistical analysis approach similar to the methods introduced by Mansfield and Hall, 2013
 - Developed O_3 quadratic regression models for Uintah Basin of Utah and the UGRB of Wyoming
 - Used limited data points in UGRB (mainly Boulder)
 - Predictor variables used in the Boulder model include: Mean predicted and measured ozone levels, seasonal
 - lapse rate
 - snow depth
 - solar angle
 - temperature
 - inversion persistence
 - surface wind speed
 - relative humidity
 - barometric pressure

OUALITY

ONMENTAL.

UGRB-11 Model Development Modifications to Mansfield and Hall Methodology

- Meteorological data a combination of:
 - WDEQ-AQD's ambient monitoring station network
 - Individual mesonet stations
- Basin-wide averages, maximum, minimums, and totals of predictor variables taken into account
- Utilize a combination of 11 independent predictor variables
 - lapse rate
 - snow depth
 - solar angle
 - basin-wide average temperature
 - inversion persistence
 - basin-wide average surface wind speed
 - relative humidity
 - barometric pressure
 - <u>basin-wide average ΔT (2m to 10m)</u>
 - <u>basin-wide average solar insolation cloudiness</u>
 - basin-wide average total ultra-violet radiation albedo

Met Stations Utilized in UGRB-11 Model

ENVIR

OUALITY

ENVIRONMENTAL

UGRB-11 Model Performance

- UGRB-11 model had a correlation (R² value) of 0.66 for data collected from January – March for 2005 - 2017
- UGRB-11 model had an average absolute error of ~ 4 ppb for the 2017 season

ENVIRONMENTAL

OUALITY

Forecasting Assistance

- UGRB-11 model will be used for operational forecasting during the 2018 winter O₃ season
- Fluctuation between the observed and modeled O_3 values serves as reminder that the regression model is primarily to be used as a guidance tool
 - Model top predictor variables:
 - Basin-wide average surface wind speed 1.
 - Solar angle 2.
 - Basin-wide average total UV radiation 3.
 - Barometric pressure 4.
 - Snow depth 5.
 - Experience top predictor variables:
 - Snow depth 1.
 - Basin-wide average surface wind speed
 - Inversion 3.
 - Basin-wide average total UV radiation
- Predictor variables provide air quality forecasters direction regarding the atmospheric conditions that are most responsible for elevated O₃ levels

Forecast Date: 3/4/2017

Enter	Forecast	Parameters

	GFS	NAM-WRF	
Surface Temperature	-1.63		°C
Surface Relative Humidity	70.5		%
Daytime Surface Wind Speed	5.07		knots
Surface Pressure (msl)	1015		mb
700 mb Temperature	1.1		°C
700 mb Elevation	2966		meters
Number of days Inversion has been in place	2		days
Daily average cloud cover	0		Enter (0-10)
Average Snow Depth	20.75		inches

orning Delta-Temperature	1.02
g b b b b b b b b b b b b b b b b b b b	

Predicted Ozone Concentration (ppb)

Basin Temp (°C) BT -1.63 Lapse Rate(K/km) LR -3.45 Inversion Day Count (#) CDI 2 DT 1.02 ∆Temp(°C) Wind Speed (m/s) WS 2.61 RH 70.50 Relative Humidity (%) Total Daily Solar Radiation(W/m2) SR 5109 UV 498 UV Radiation(W/m2) Zenith Solar Angle (°) SA 49.96 Snow Depth(in) SD 20.75 BP 0.779 Barometric Pressure (bar)

°C

77.1

Questions?

Contact Information

<u>Planning Section Supervisor</u> Adam Deppe Email: <u>adam.deppe@wyo.gov</u> Phone: 307-777-6088

<u>Air Quality Meteorologist</u> Alexandria Herdt Email: <u>alexandria.herdt@wyo.gov</u> Phone: 307-777-8754