

trinityconsultants.com

Representative Meteorological Data for AERMOD: A Case Study of WRF-Extracted Data Versus Nearby Airport Data

January 25, 2018

Brian Holland
Tiffany Stefanescu
Qiguo Jing
Weiping Dai

The Typical Approach

- > Typical met data for near-field air dispersion modeling:
 - Closest airport station to facility being modeled
 - Purpose-built "on-site" stations located at or near the facility
- Large error if distance from actual location is too great
- Large error if conditions change rapidly with distance (e.g. complex terrain)

The New Alternative

- New option: mesoscale meteorological data (WRF)
 - Long history in weather forecasting and regional AQ modeling (CALPUFF, CAMx, CMAQ)
- > Potential to eliminate distance-based error
- > Downside: forecast error is much greater than observational error
- > In practice, which has less error?
 - Somewhat distant observed met station
 - Mesoscale model-derived met data

Objectives

- > Evaluate model accuracy using:
 - Observed data that isn't in the perfect spot (typical)
 - Model-derived data
 - On-site data (approximate "truth")
- Consider differing regulatory guidance (land use, ADJ_U*, etc.)
- > Two cases:
 - Simple terrain (Gulf Coast)
 - Complex terrain (Rocky Mountains)

Methods

- > An on-site met station is used as "truth"
- > Evaluate met data itself
 - A moderately distant airport station
 - The closest grid cell of a WRF model run
- > Evaluate AERMOD model results using each data source (site specific "truth", distant airport, and WRF)

Simple Terrain Case Study

- > Source location/on-site "truth": Wallisville Road air quality monitor location near Houston, TX (AQS: 48-201-0617)
- NWS airport met data taken from George Bush Intercontinental (KIAH)
- > WRF dataset extracted from the nearest gridpoint of a 12 km resolution national WRF simulation obtained from US EPA
- > Data from January-December 2007 was used

Methods

Complex Terrain Case Study

- > Wamsutter, WY air quality monitor location (AQS: 56-037-0200) was used as source location
 - Onsite data from the monitor was used as "true" met conditions at the site
- NWS airport met data was taken from the Rock Springs, Wyoming Airport (KRKS)
- WRF dataset extracted from the nearest gridpoint of a 12 km resolution national WRF simulation obtained from US EPA
- > Data from January-December 2008 was used

Methods

Meteorological Data Processing

- Data processed according to latest U.S. EPA regulations/guidance/recommendations
- > All data processed using AERMET
- WRF: extracted to point data files using U.S. EPA's MMIF tool, then processed through AERMET
- > Airport data: uses 1-minute wind data (AERMINUTE)
- > 0.5 m/s calm wind threshold for all datasets
- > Land use:
 - 1992 NLCD (via AERSURFACE) used for airport and on-site data
 - Land use data from WRF (via MMIF) used for WRF data

Meteorological Data Processing: ADJ_U* Option in AERMET

- Intended to offset AERMOD's tendency to over-predict concentrations from nearground sources under stable, low wind conditions
 - Applied to the airport and WRF met datasets in accordance with US EPA guidance
 - Not applied to the "truth" datasets
 - ♦ The onsite stations used as "truth" include hourly σ_{θ} (standard deviation of horizontal wind direction) data
 - ◆US EPA guidance on use of ADJ_U* recommends that it not be used if direct measurements of turbulence are available

AERMOD Simulations

- > Two different sources were modeled
 - Ground-level volume source
 - ❖ 35-meter stack source
- > Terrain data incorporated with AERMAP
- No building downwash
- > AERMOD simulations were carried out for a one-year period
- > Regulatory default settings were used
- Maximum 1-hr, 24-hr, and annual concentrations modeled

Results: Met Data Comparison Simple Terrain Case

> Wind Direction:

- Modest differences between all datasets
- Increased frequency of prevailing SSE/SE wind pattern in WRF dataset

> Wind Speeds:

- Low winds underestimated by both (moreso by Airport than WRF)
- High winds overrepresented by Airport
- Land use?

Results: Met Data Comparison Complex Terrain Case

- > Wind Direction:
 - Major differences between all datasets
- > Wind speeds:
 - High winds overrepresented in Airport, underrepresented in WRF
 - Average Airport wind speeds were higher than average WRF or Truth wind speeds
 - Land use? (or just local variation...)

Comparison of AERMOD Results

Maximum Annual Concentration					
Source Group	Simple Terrain		Complex Terrain		
	Airport	WRF	Airport	WRF	
Tall Stack	1.34	1.67	1.28	0.80	
Ground Level	0.52	0.45	0.50	0.39	

Maximum 1-Hour Concentration					
Source Group	Simple Terrain		Complex Terrain		
	Airport	WRF	Airport	WRF	
Tall Stack	0.85	1.29	0.85	1.21	
Ground Level	0.14	0.16	0.21	0.29	

Maximum 24-Hour Concentration					
Source Group	Simple Terrain		Complex Terrain		
	Airport	WRF	Airport	WRF	
Tall Stack	1.37	1.70	0.86	1.10	
Ground Level	0.37	0.42	0.24	0.22	

Summary of max ground-level 1-hour, 24-hour, and annual average concentrations, normalized so "Truth" concentration is 1.00

- > Ground-level source: large, consistent under-prediction (more on this later)
- > Tall stack source: better performance
- > Airport and WRF results broadly comparable
- > WRF results more conservative in most cases
 - Exception: Annual maximum concentrations
 Tripity

Comparison of AERMOD Results

Normalized Bias (1-Hour Concentrations)					
Source Group	Simple Terrain		Complex Terrain		
	Airport	WRF	Airport	WRF	
Tall Stack	-20%	30%	2%	-12%	
Ground Level	-81%	-63%	-45%	-35%	

Normalized RMSE (1-Hour Concentrations)						
Source Group	Simple Terrain		Complex Terrain			
	Airport	WRF	Airport	WRF		
Tall Stack	34%	49%	47%	38%		
Ground Level	124%	110%	126%	119%		

Bias and RMSE, normalized based on the average "Truth" concentration.

- Broadly similar performance in most cases
- Both the Airport and WRF datasets showed:
 - a consistent under-prediction bias for the ground level source
 - lower bias for the tall stack source
- Normalized RMSE for the WRF dataset was lower than for the Airport dataset with the exception of the simple terrain, tall stack case.

Comparison of AERMOD Results

Q-Q plots for 1-hour concentrations resulting from a tall stack and ground level source in the simple and complex terrain cases

Conclusions: WRF-Derived Met Data vs Traditional Airport Data

- > Wind speed and direction: broadly similar
 - Both struggle with wind patterns in complex terrain (12 km WRF resolution?)
 - Low wind speeds underweighted by Airport data (flat, open land use), better represented by WRF
- > AERMOD model performance: broadly similar
 - Performance of Airport vs. WRF data varied among source, type, averaging period, and assessment metric
 - Broadly similar error, bias, etc. (more cases needed to draw a broader conclusion)
 - Findings support use of WRF in near-field dispersion modeling when no representative observation site is available. Similar conclusions to U.S. EPA evaluation of mesoscale models
 - https://www3.epa.gov/ttn/scram/appendix_w/2016/MMIF_Evaluation_ _TSD.pdf

Conclusions: Applicability of ADJ_U* to Onsite Met Datasets

Sound-level source produced much lower concentrations with WRF and Airport data than with on-site "truth" data

> WRF and Airport data used ADJ_U* AERMET

option;

> On-site "truth" did not

Conclusions: Applicability of ADJ_U* to Onsite Met Datasets

- > U.S. EPA ADJ_U* guidance:
 - Use for Airport data
 - Use for WRF data
 - Use for on-site stations with no direct turbulence measurement
 - Do NOT use for on-site stations with direct turbulence measurements (turbulence measurements should eliminate the need for a manual U* adjustment)
- > This case: on-site station collects some turbulence data (σ_{Θ})
- > Conclusion:
 - \bullet Either ADJ_U* should be used when σ_{Θ} is only available turbulence data, or
 - Use of ADJ_U* with airport and WRF data is wrong
 - ◆ Conclusion contrary to extensive ADJ_U* validation studies

Conclusions: Applicability of ADJ_U* to Onsite Met Datasets

> ADJ_U* should be applied to on-site met data if σ_{θ} is the only available turbulence data (very common)

> With this change, all three AERMOD met data options produce broadly

consistent results

Q-Q plots for 1-hour concentrations resulting from a ground-level source in the simple terrain case, with ADJ_U* not applied to the onsite ("Truth") meteorological dataset (left) and with ADJ_U* applied (right)

Questions?

bholland@trinityconsultants.com

Phone: +1 972 661-8881

